

FT-NMR Detection of ^{45}Sc , ^{49}Ti and ^{93}Nb in TiO_2 Single Crystal*

K. Sato, S. Takeda^{a#}, S. Fukuda[‡], T. Minamisono, M. Tanigaki^{**}, T. Miyake, Y. Maruyama, K. Matsuta, M. Fukuda, and Y. Nojiri⁺

Department of Physics Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan

^a Department of Chemistry, Same Graduate School

Z. Naturforsch. **53a**, 549–551 (1998); received December 31, 1997

In order to determine the electric quadrupole moment of the short-lived β -emitter ^{41}Sc from the quadrupole coupling constant in TiO_2 , we measured the field gradient by detecting the Fourier-Transformed-NMR of stable isotope ^{45}Sc doped in TiO_2 . Also, in order to study the electronic structure of impurities systematically, EFGs were measured for ^{45}Sc , ^{49}Ti and ^{93}Nb in a TiO_2 single crystal.

Key words: TiO_2 ; ^{41}Sc ; Quadrupole Moment; Transition Metal Impurity; Electric Field Gradient.

Reprint requests to K. Sato. E-mail: ksato@hep.sci.osaka-u.ac.jp